Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 697
Filter
1.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38700127

ABSTRACT

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Subject(s)
Carbon Isotopes , Charadriiformes , Feathers , Nitrogen Isotopes , Sulfur Isotopes , Animals , Feathers/chemistry , Sulfur Isotopes/analysis , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Charadriiformes/physiology , Charadriiformes/metabolism , Mass Spectrometry/methods
2.
Mar Pollut Bull ; 202: 116327, 2024 May.
Article in English | MEDLINE | ID: mdl-38581734

ABSTRACT

The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.


Subject(s)
Charadriiformes , Waste Disposal Facilities , Animals , Charadriiformes/physiology , Environmental Monitoring
3.
Sci Rep ; 14(1): 9248, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649736

ABSTRACT

Urbanisation has contributed to a severe decline in biodiversity worldwide. However, urban ecosystems can also play an important role in the conservation of threatened species, including ground-nesting birds such as the Eurasian Oystercatcher (Haematopus ostralegus). While the coastal populations of this shorebird have declined sharply, there is growing evidence that pairs nesting on urban flat roofs have high reproductive success. However, the reasons for rooftop nesting and the species' habitat use in urban areas remain poorly understood. In this study, we investigate the territory selection and foraging behaviour of the Eurasian Oystercatcher in the city of Münster (NW Germany). All nesting sites were located on flat roofs (N = 24), most of which were covered with gravel. Overall, reproductive success was high. This was mainly because the roofs provided protection from mammalian predators, leading to increased nest and chick survival. Moreover, breeding performance in the study area was favoured by the proximity of sports pitches. According to our observations, they provided a large amount of easily accessible prey throughout the breeding season. Overall, our study highlights that the reproductive success of the Eurasian Oystercatcher in urban environments is highly dependent on both safe nesting sites on flat roofs and the availability of suitable foraging habitats. Although our study suggests that breeding in urban areas can be beneficial for the model organism, the species' strong territory fidelity makes it very sensitive to the rapid environmental changes occurring in cities. The value of urban ecosystems for bird conservation should therefore be better integrated into urban planning and management.


Subject(s)
Ecosystem , Nesting Behavior , Animals , Nesting Behavior/physiology , Conservation of Natural Resources/methods , Reproduction/physiology , Germany , Charadriiformes/physiology , Cities , Sports , Endangered Species
4.
J R Soc Interface ; 21(213): 20230734, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654630

ABSTRACT

Avian wing morphing allows dynamic, active control of complex flight manoeuvres. Previous linear time-invariant (LTI) models have quantified the effect of varying fixed wing configurations but the time-dependent effects of morphing between different configurations is not well understood. To fill this gap, I implemented a linear parameter-varying (LPV) model for morphing wing gull flight. This approach models the wing joint angles as scheduled parameters and accounts for nonlinear kinematic and gravitational effects while interpolating between LTI models at discrete trim points. With the resulting model, I investigated the longitudinal response associated with various joint extension trajectories. By optimizing the extension trajectory for four independent objectives (speed and pitch angle overshoot, speed rise time and pitch angle settling time), I found that the extension trajectory inherent to the gull wing does not guarantee an optimal response but may provide a sufficient response with a simpler mechanical implementation. Furthermore, the results indicated that gulls likely require extension speed feedback. This morphing LPV model provides insights into underlying control mechanisms, which may allow for avian-like flight in future highly manoeuvrable uncrewed aerial vehicles.


Subject(s)
Flight, Animal , Models, Biological , Wings, Animal , Flight, Animal/physiology , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Biomechanical Phenomena , Charadriiformes/physiology , Charadriiformes/anatomy & histology
5.
Proc Biol Sci ; 291(2015): 20231887, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38228179

ABSTRACT

Arctic birds and mammals are physiologically adapted to survive in cold environments but live in the fastest warming region on the planet. They should therefore be most threatened by climate change. We fitted a phylogenetic model of upper critical temperature (TUC) in 255 bird species and determined that TUC for dovekies (Alle alle; 22.4°C)-the most abundant seabird in the Arctic-is 8.8°C lower than predicted for a bird of its body mass (150 g) and habitat latitude. We combined our comparative analysis with in situ physiological measurements on 36 dovekies from East Greenland and forward-projections of dovekie energy and water expenditure under different climate scenarios. Based on our analyses, we demonstrate that cold adaptation in this small Arctic seabird does not handicap acute tolerance to air temperatures up to at least 15°C above their current maximum. We predict that climate warming will reduce the energetic costs of thermoregulation for dovekies, but their capacity to cope with rising temperatures will be constrained by water intake and salt balance. Dovekies evolved 15 million years ago, and their thermoregulatory physiology might also reflect adaptation to a wide range of palaeoclimates, both substantially warmer and colder than the present day.


Subject(s)
Charadriiformes , Ecosystem , Animals , Phylogeny , Charadriiformes/physiology , Birds , Climate Change , Mammals , Arctic Regions
6.
PLoS One ; 19(1): e0295946, 2024.
Article in English | MEDLINE | ID: mdl-38232078

ABSTRACT

Climate change imposes physiological constraints on organisms particularly through changing thermoregulatory requirements. Bergmann's and Allen's rules suggest that body size and the size of thermoregulatory structures differ between warm and cold locations, where body size decreases with temperature and thermoregulatory structures increase. However, phenotypic plastic responses to malnutrition during development can result in the same patterns while lacking fitness benefits. The Gulf of Maine (GOM), located at the southern end of the Labrador current, is warming faster than most of the world's oceans, and many of the marine species that occupy these waters exist at the southern edge of their distributions including Atlantic puffins (Fratercula arctica; hereafter "puffin"). Monitoring of puffins in the GOM, at Machias Seal Island (MSI), has continued annually since 1995. We asked whether changes in adult puffin body size and the proportional size of bill to body have changed with observed rapid ocean warming. We found that the size of fledgling puffins is negatively related to sea surface temperature anomalies (warm conditions = small fledgers), adult puffin size is related to fledgling size (small fledgers = small adults), and adult puffins have decreased in size in recent years in response to malnutrition during development. We found an increase in the proportional size of bill to wing chord, likely in response to some mix of malnutrition during development and increasing air temperatures. Although studies have assessed clinal variation in seabird morphology with temperature, this is the first study addressing changes in seabird morphology in relation to ocean warming. Our results suggest that puffins nesting in the GOM have morphological plasticity that may help them acclimate to ocean warming.


Subject(s)
Charadriiformes , Malnutrition , Animals , Charadriiformes/physiology , Cold Temperature , Oceans and Seas , Temperature
7.
J Exp Biol ; 226(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-37990955

ABSTRACT

Energetics can provide novel insights into the roles of animals, but employing an energetics approach has traditionally required extensive empirical physiological data on the focal species, something that can be challenging for those that inhabit marine environments. There is therefore a demand for a framework through which to estimate energy expenditure from readily available data. We present the energetic costs associated with important time- and energy-intensive behaviours across nine families of marine bird (including seabirds, ducks, divers and grebes) and nine ecological guilds. We demonstrate a worked example, calculating the year-round energetic expenditure of the great auk, Pinguinus impennis, under three migration scenarios, thereby illustrating the capacity of this approach to make predictions for data-deficient species. We provide a comprehensive framework through which to model marine bird energetics and demonstrate the power of this approach to provide novel, quantitative insights into the influence of marine birds within their ecosystems.


Subject(s)
Charadriiformes , Ecosystem , Animals , Birds/physiology , Charadriiformes/physiology , Ducks , Energy Metabolism/physiology
8.
Biol Lett ; 19(11): 20230391, 2023 11.
Article in English | MEDLINE | ID: mdl-37991194

ABSTRACT

In many animals, males compete for access to fertile females. The resulting sexual selection leads to sex differences in morphology and behaviour, but may also have consequences for physiology. Pectoral sandpipers are an arctic-breeding polygynous shorebird in which males perform elaborate displays around-the-clock and move over long distances to sample potential breeding sites, implying the need for physiological adaptations to cope with extreme endurance. We examined the oxygen carrying capacity of pectoral sandpipers, measured as the volume percentage of red blood cells in blood (haematocrit, Hct). We found a remarkable sex difference in Hct levels, with males having much higher values (58.9 ± 3.8 s.d.) than females (49.8 ± 5.3 s.d.). While Hct values of male pectoral sandpipers are notable for being among the highest recorded in birds, the sex difference we report is unprecedented and more than double that of any previously described. We also show that Hct values declined after arrival to the breeding grounds in females, but not in males, suggesting that males maintain an aerobic capacity during the mating period equivalent to that sustained during trans-hemispheric migration. We conclude that sexual selection for extreme physical performance in male pectoral sandpipers has led to exceptional sex differences in oxygen carrying capacity.


Subject(s)
Charadriiformes , Sex Characteristics , Animals , Female , Male , Sexual Selection , Conservation of Natural Resources , Sexual Behavior, Animal/physiology , Birds/physiology , Charadriiformes/physiology
9.
Mar Pollut Bull ; 188: 114659, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36738727

ABSTRACT

Chemical dispersion is an oil spill response strategy where dispersants are sprayed onto the oil slick to enhance oil dispersion into the water. However, accidental application could expose seabirds to dispersants, thereby negatively affecting their plumage. To understand the possible impacts on seabirds, feathers from common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) were exposed to different dosages of the dispersant Dasic Slickgone NS. For all exposure dosages the feathers increased in weight, and mostly for common eider. Analysing the feather microstructure, e.g., the Amalgamation Index, showed that larger damages were found on thick-billed murre than common eider. A no-sinking limit was established at 0.109 ml/m2. Relating this value to desktop simulations of potential sea-surface dosages in real-life situations, and to published accounts of response operations, showed that the limit is likely to be exceeded. Thus, our results show that chemical dispersants in realistic dosages could impact seabirds.


Subject(s)
Charadriiformes , Petroleum Pollution , Water Pollutants, Chemical , Animals , Feathers/chemistry , Arctic Regions , Water/analysis , Petroleum Pollution/analysis , Ducks , Charadriiformes/physiology , Water Pollutants, Chemical/analysis
10.
Environ Pollut ; 316(Pt 2): 120548, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36336179

ABSTRACT

Microplastic (particle size <5 mm) is considered an emerging threat to the marine environment, yet data are limited for coastal ecosystems. To provide information related to microplastic in a coastal system, we used alkaline tissue digestion and Raman spectroscopy to quantify the prevalence and composition (e.g. fiber, fragment, foam, etc.) of anthropogenic microparticles in the digestive tracts of northern anchovies (Engraulis mordax, anchovy, n = 24), and common murres (Uria aalge, murre, n = 19) from the Monterey Bay, California USA. We also determined microplastic prevalence and composition in seawater (n = 12 17-h sampling periods representing ∼46,000 L sampled) from two Monterey Bay intake systems (Moss Landing, CA and Santa Cruz, CA USA). Microparticles recovered from murre digestive tracts were assessed for estrogenic activity using an in-vitro estrogen receptor activation assay. Suspected anthropogenic microparticles based on visual characteristics were recovered from all sample types with ∼2 particles per 1000 L from the seawater sampling periods, 58% prevalence in anchovies, and 100% prevalence in murres. Across samples of seawater, anchovies, and murres, the most abundant microparticle type found were fibers (78%), followed by fragments (13%), foam (6%), film (2%), and beads (1%). Raman spectroscopy identified 57% of microparticles (excluding dye-prominent and unknown) as plastic (synthetic, semi-synthetic, or blends). Almost one quarter (23%) of the murre digestive tracts contained microparticles that exhibited estrogenic activity. Our study describes the widespread occurrence, composition, and potential estrogenic activity of microplastic in the Monterey Bay and provides important information to aid in the understanding of microplastic contamination in coastal systems.


Subject(s)
Charadriiformes , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Bays , Environmental Monitoring , Prevalence , Ecosystem , Charadriiformes/physiology , Fishes , Estrone , Water Pollutants, Chemical/analysis
11.
Anim Cogn ; 26(2): 709-713, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36153760

ABSTRACT

The capacity to follow human cues provides animals with information about the environment and can hence offer obvious adaptive benefits. Most studies carried out so far, however, have been on captive animals with previous experience with humans. Further comparative investigation is needed to properly assess the factors driving the emergence of this capacity under natural conditions, especially in species that do not have longstanding interactions with humans. Wild brown skuas (Catharacta antarctica ssp. lonnbergi) are non-neophobic seabirds that live in human-free habitats. In test 1, we assessed this species' capacity to use human behavioural cues (i.e., pecking at the same object previously picked up and lifted by a human experimenter) when the items presented were food objects: anthropogenic objects (wrapped muffins) and natural-food-resembling objects (plaster eggs). In test 2, we examined the response of another skua population towards non-food objects (sponges). Although all skuas in test 1 pecked at the objects, they pecked significantly more at the same previously handled items when they resembled natural food (plaster eggs). Most skuas in test 2, however, did not approach or peck at the non-food objects presented. Our results lead us to suggest that the use of human behavioural cues may be influenced by skuas' foraging ecology, which paves the way to further field studies assessing whether this capacity is directed specifically towards food objects and/or develops after previous interaction with humans.


Subject(s)
Charadriiformes , Cues , Humans , Animals , Charadriiformes/physiology , Ecosystem
12.
Proc Natl Acad Sci U S A ; 119(37): e2204847119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067296

ABSTRACT

Birds perform astounding aerial maneuvers by actuating their shoulder, elbow, and wrist joints to morph their wing shape. This maneuverability is desirable for similar-sized uncrewed aerial vehicles (UAVs) and can be analyzed through the lens of dynamic flight stability. Quantifying avian dynamic stability is challenging as it is dictated by aerodynamics and inertia, which must both account for birds' complex and variable morphology. To date, avian dynamic stability across flight conditions remains largely unknown. Here, we fill this gap by quantifying how a gull can use wing morphing to adjust its longitudinal dynamic response. We found that it was necessary to adjust the shoulder angle to achieve trimmed flight and that most trimmed configurations were longitudinally stable except for configurations with high wrist angles. Our results showed that as flight speed increases, the gull could fold or sweep its wings backward to trim. Further, a trimmed gull can use its wing joints to control the frequencies and damping ratios of the longitudinal oscillatory modes. We found a more damped phugoid mode than similar-sized UAVs, possibly reducing speed sensitivity to perturbations, such as gusts. Although most configurations had controllable short-period flying qualities, the heavily damped phugoid mode indicates a sluggish response to control inputs, which may be overcome while maneuvering by morphing into an unstable flight configuration. Our study shows that gulls use their shoulder, wrist, and elbow joints to negotiate trade-offs in stability and control and points the way forward for designing UAVs with avian-like maneuverability.


Subject(s)
Charadriiformes , Flight, Animal , Wings, Animal , Animals , Charadriiformes/physiology , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology
13.
Sci Total Environ ; 852: 157879, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35944643

ABSTRACT

The energy exchange between the Earth's surface and atmosphere results in a highly dynamic habitat through which birds move. Thermal uplift is an atmospheric feature which many birds are able to exploit in order to save energy in flight, but which is governed by complex surface-atmosphere interactions. In mosaic landscapes consisting of multiple land uses, the spatial distribution of thermal uplift is expected to be heterogenous and birds may use the landscape selectively to maximise flight over areas where thermal soaring opportunities are best. Flight generalists such as the lesser black-backed gull, Larus fuscus, are expected to be less reliant on thermal uplift than obligate soaring birds. Nevertheless, gulls may select flight behaviours and routes in response to or in anticipation of thermal uplift in order to reduce their transport costs, even in landscapes where thermal uplift isn't prevalent. We explore thermal soaring over land in lesser black-backed gulls by using high-resolution GPS tracking to characterise individual instances of thermal soaring and detailed energy exchange modelling to map the thermal landscape which gulls experience. We determine that lesser black-backed gulls are regularly able to undertake thermal soaring, even in a wet temperate landscape below sea level. By examining the relationship between lesser black-backed gull flight, thermal uplift and land use, we determine that built up areas, particularly towns and cities, provide thermal uplift hotspots which lesser black-backed gulls preferentially make use of, resulting in more opportunities for energy saving flight through thermal soaring.


Subject(s)
Charadriiformes , Flight, Animal , Animals , Flight, Animal/physiology , Birds , Charadriiformes/physiology , Ecosystem , Cities
14.
Proc Biol Sci ; 289(1978): 20220139, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35858061

ABSTRACT

Determinants of individual variation in reallocation of limited resources towards self-maintenance versus reproduction are not well known. We tested the hypothesis that individual heterogeneity in long-term 'somatic state' (i) explains variation in endocrine and behavioural responses to environmental challenges, and (ii) is associated with variation in strategies for allocating to self-maintenance versus reproduction. We used relative telomere length as an indicator of somatic state and experimentally generated an abrupt short-term reduction of food availability (withdrawal of food supplementation) for free-living seabirds (black-legged kittiwakes, Rissa tridactyla). Incubating male kittiwakes responded to withdrawal by increasing circulating corticosterone and losing more weight compared to continuously supplemented controls. Males with longer telomeres increased time in directed travel regardless of treatment, while experiencing smaller increases in corticosterone. Males with longer telomeres fledged more chicks in the control group and tended to be more likely to return regardless of treatment. This study supports the hypothesis that somatic state can explain variation in short-term physiological and behavioural responses to challenges, and longer-term consequences for fitness. Male kittiwakes with longer telomeres appear to have prioritized investment in self over investment in offspring under challenging conditions.


Subject(s)
Charadriiformes , Corticosterone , Animals , Charadriiformes/physiology , Food , Male , Reproduction/physiology , Telomere
15.
Oecologia ; 199(2): 367-376, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35716234

ABSTRACT

Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure. Here, we find that food-supplemented birds expended less energy than control birds because they spent more time at the colony. However, foraging trips of food-supplemented birds were only slightly shorter than control birds, implying that food-supplemented birds were limited by food availability at sea similarly to control birds. Late breeders expended less energy, suggesting that low-quality individuals may not intake the energy necessary for sustaining high-energy output. Food-supplemented birds had more offspring than control birds, but offspring number did not influence energy expenditure, supporting the idea that the birds reached an energy ceiling. Males and lighter birds expended more energy, possibly compensating for relatively higher energy intake. Chick-rearing birds were working near their maximum, with highest levels of expenditure for early-laying (high-quality) individuals foraging at sea. Due to fluctuating marine environments, kittiwakes may be forced to change their foraging behaviors to maintain the balance between reproduction and survival.


Subject(s)
Charadriiformes , Reproduction , Animals , Birds/physiology , Charadriiformes/physiology , Energy Metabolism/physiology , Food Supply , Male , Reproduction/physiology
16.
Ecology ; 103(9): e3743, 2022 09.
Article in English | MEDLINE | ID: mdl-35524939

ABSTRACT

Climate change has caused shifts in seasonally recurring biological events leading to the temporal decoupling of consumer-resource pairs, that is, phenological mismatching. Although mismatches often affect individual fitness, they do not invariably scale up to affect populations, making it difficult to assess the risk they pose. Individual variation may contribute to this inconsistency, with changes in resource availability and consumer needs leading mismatches to have different outcomes over time. Nevertheless, most models estimate a consumer's match from a single time point, potentially obscuring when mismatches matter to populations. We analyzed how the effects of mismatches varied over time by studying precocial Hudsonian godwit (Limosa haemastica) chicks and their invertebrate prey from 2009 to 2019. We developed individual- and population-level models to determine how age-specific variation affects the relationship between godwits and resource availability. We found that periods with abundant resources led to higher growth and survival of godwit chicks, but also that chick survival was increasingly related to the availability of larger prey as chicks aged. At the population level, estimates of mismatches using age-structured consumer demand explained more variation in annual godwit fledging rates than more commonly used alternatives. Our study suggests that modeling the effects of mismatches as the disrupted interaction between dynamic consumer needs and resource availability clarifies when mismatches matter to both individuals and populations.


Subject(s)
Charadriiformes , Aged , Animals , Charadriiformes/physiology , Climate Change , Humans
17.
J Anim Ecol ; 91(4): 752-765, 2022 04.
Article in English | MEDLINE | ID: mdl-35157312

ABSTRACT

Density-dependent regulation can offer resilience to wild populations experiencing fluctuations in environmental conditions because, at lower population sizes, the average quality of habitats or resources is predicted to increase. Site-dependent regulation is a mechanism whereby individuals breed at the highest quality, most successful, sites, leaving poorer quality, less successful sites vacant. As population size increases, higher quality sites become limiting but when populations decline, lower quality sites are vacated first, offering resilience. This process is known as the 'buffer effect'. However, few studies have tested whether such regulation operates in populations experiencing changes in size and trend. We used data from a population of common guillemots Uria aalge, a colonially breeding seabird, to investigate the relationship between site occupancy probability, site quality and population size and trend. These data were collected at five sub-colonies spanning a 38-year period (1981-2018) comprising phases of population increase, decrease and recovery. We first tested whether site quality and population size in sub-colonies explained which sites were occupied for breeding, and if this was robust to changes in sub-colony trend. We then investigated whether disproportionate use of higher quality sites drove average site quality and breeding success across sub-colony sizes and trends. Finally, we tested whether individuals consistently occupied higher quality sites during periods of decline and recovery. Higher quality sites were disproportionality used when sub-colony size was smaller, resulting in higher average site quality and breeding success at lower population sizes. This relationship was unaffected by changes in sub-colony trend. However, contrary to the predictions of the buffer effect, new sites were established at a similar rate to historically occupied sites during sub-colony decline and recovery despite being of lower quality. Our results provide support for the buffer effect conferring resilience to populations, such that average breeding success was consistently higher at lower population size during all phases of population change. However, this process was tempered by the continued establishment of new, lower quality, sites which could act to slow population recovery after periods when colony size was low.


Subject(s)
Charadriiformes , Animals , Charadriiformes/physiology , Ecosystem , Population Density
18.
J Exp Biol ; 225(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35019973

ABSTRACT

Breeding is costly for many animals, including birds that must deliver food to a central place (i.e. nest). Measuring energy expenditure throughout the breeding season can provide valuable insight into physiological limitations by highlighting periods of high demand, and ultimately allows improvement of conservation strategies. However, quantifying energy expenditure in wildlife can be challenging, as existing methods do not measure both active (e.g. foraging) and resting energy costs across short and long time scales. Here, we developed a novel method for comparing active and resting costs in 66 pre-breeding and breeding seabirds (black-legged kittiwakes, Rissa tridactyla) by combining accelerometry and triiodothyronine (T3) as proxies for active and resting costs, respectively. Active energy costs were higher during incubation (P=0.0004) and chick rearing (P<0.0001) than during pre-laying, because of an increase in the time spent in flight of 11% (P=0.0005) and 15% (P<0.0001), respectively. Levels of T3, reflecting resting costs, peaked marginally during incubation with a mean (±s.d.) concentration of 4.71±1.97 pg ml-1 in comparison to 2.66±1.30 pg ml-1 during pre-laying (P=0.05) and 3.16±2.85 pg ml-1 during chick rearing (P=0.11). Thus, although chick rearing is often assumed to be the costliest breeding stage by multiple studies, our results suggest that incubation could be more costly as a result of high resting costs. We highlight the importance of accounting for both active and resting costs when assessing energy expenditure.


Subject(s)
Charadriiformes , Accelerometry , Animals , Arctic Regions , Birds/physiology , Charadriiformes/physiology , Energy Metabolism/physiology
19.
PLoS One ; 17(1): e0263031, 2022.
Article in English | MEDLINE | ID: mdl-35077514

ABSTRACT

Migratory strategies dictate stopover ecology, particularly concerning decisions of when, where and how long to stop, and what to do at stationary periods. In birds, individuals stop primarily to replenish energy stores, although the functions of stopover events vary among and within species, particularly between pre- and post-breeding seasons. Here, we combined plasma metabolite levels and haematological parameters to compare refuelling rates and physiological state within (early, mid, late) and between (spring, autumn) migratory periods, aiming to identify potentially different migratory strategies in a shorebird, the dunlin Calidris alpina, using a key stopover site in Iberia. Plasma triglycerides and ß-hydroxybutyrate concentrations did not differ between seasons, and small differences were found in haematological profiles (higher haemoglobin and hematocrit levels in spring). Similar refuelling rates and physiological status suggests a single migratory strategy in spring and autumn. During both seasons, dunlins arrive at the Tagus estuary with medium-to-high fuel loads, indicating they do not engage in prolonged fuelling. This agrees with a skipping migratory strategy, where birds fly short-to-medium distances while fuelling at moderate rates along a network of sites. Although we may expect late spring migrants to experience stronger pressures to optimally schedule migratory events, we found no significant differences in physiological profiles among early, mid and late migrants. Unexpectedly, such differences were found in autumn: early birds showed the highest triglycerides and haemoglobin levels and lowest ß-hydroxybutyrate concentrations. These results denote enhanced refuelling rates and blood oxygen-carrying capacity in early autumn migrants, which is typical of jumpers, i.e., birds travelling with larger fuel loads and performing fewer stops. Our study adds substantially to previous knowledge of stopover ecology in migratory shorebirds in the East Atlantic Flyway. Importantly, it indicates that the Tagus estuary is a high-quality stopover site for intermediate fuelling. Yet, understanding non-fuelling stopping functions is needed to ultimately inform conservation planning.


Subject(s)
Animal Migration/physiology , Charadriiformes/physiology , Estuaries , Seasons , Wetlands , Animals
20.
J Anim Ecol ; 91(3): 566-579, 2022 03.
Article in English | MEDLINE | ID: mdl-34822170

ABSTRACT

Longitudinal tracking studies have revealed consistent differences in the migration patterns of individuals from the same populations. The sources or processes causing this individual variation are largely unresolved. As a result, it is mostly unknown how much, how fast and when animals can adjust their migrations to changing environments. We studied the ontogeny of migration in a long-distance migratory shorebird, the black-tailed godwit Limosa limosa limosa, a species known to exhibit marked individuality in the migratory routines of adults. By observing how and when these individual differences arise, we aimed to elucidate whether individual differences in migratory behaviour are inherited or emerge as a result of developmental plasticity. We simultaneously tracked juvenile and adult godwits from the same breeding area on their south- and northward migrations. To determine how and when individual differences begin to arise, we related juvenile migration routes, timing and mortality rates to hatch date and hatch year. Then, we compared adult and juvenile migration patterns to identify potential age-dependent differences. In juveniles, the timing of their first southward departure was related to hatch date. However, their subsequent migration routes, orientation, destination, migratory duration and likelihood of mortality were unrelated to the year or timing of migration, or their sex. Juveniles left the Netherlands after all tracked adults. They then flew non-stop to West Africa more often and incurred higher mortality rates than adults. Some juveniles also took routes and visited stopover sites far outside the well-documented adult migratory corridor. Such juveniles, however, were not more likely to die. We found that juveniles exhibited different migratory patterns than adults, but no evidence that these behaviours are under natural selection. We thus eliminate the possibility that the individual differences observed among adult godwits are present at hatch or during their first migration. This adds to the mounting evidence that animals possess the developmental plasticity to change their migration later in life in response to environmental conditions as those conditions are experienced.


Subject(s)
Animal Migration , Charadriiformes , Animal Migration/physiology , Animals , Birds , Charadriiformes/physiology , Netherlands , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...